Sunday, May 19, 2013

Indexing the human genome

Last time I had decided that to efficiently analyze the reads, we had to make an index of the human genome. So how do we go about that?

Library of Congress Classification - Reading Room
Indexing at the Library of Congress
What we need is an efficient way to access any given substring in the genome. It's not quite the same as indexing a book; rather than determining the locations of "dynamo", "father", and "pseudopodia" in the book, we need to be able to find the location of EVERY substring. It's as if, in our book, we had to find instances of "dynamo", "ynamo", "namo" and so on. Not only that, but if the book had the sentence, "A dynamo has unlimited duration." we have to find instances of "namo h", "namo ha" "namo has" and so on.

So we can't just split the genome by word boundaries like we would for a book. Can we split it into even-sized chunks and index those? For example, could we choose a chunk size of five and split every ten characters into two index entries?

It won't work. For example, if the genome was "AGACTTGCTG", we might choose to index every five characters (called a 5-mer). This would give us two strings, "AGACT" and "TGCTG", which is fine, but if we come along later and try to search for "CTTGC", we're out of luck - that's not in our index. But it is in the string.

So we have to choose an index size and go through the genome character by character. In our ten-character genome, indexing by 5-mer, we get the strings:


(and a few shorter strings at the end, if we so desire.)

To be useful, we'll have to store our index as a dictionary of 5-mers to an array of integers, representing the locations in the genome where that string was found. For our sample, we have 30 characters worth of 5-mers, and just six integers to save, for a total of 54 bytes. What happens when we index the whole genome?

It's a fair assumption that every possible string will be in the genome, so we'll have 4or 1024 entries in our index. The number of values, though...we have to have an index value for every single character in the genome. If our genome was the book Moby Dick, we'd have around a million characters to index. Each index value would have, on average, about 1000 items in it. If we're really hoping to match all of our reads to each item in the index, we're going to go through 1000 entries for each read, which might be a bit slow. Unfortunately, our genome isn't Moby Dick. It's roughly the size of 6,000 Moby Dicks. Each index is going to be in just about six million locations. It can't possibly read all those at the speed we require.

Okay, so if we have too many items per index value, we just have to make our index larger. What if we do 10-mers, or even 20-mers? Well, 10-mers gives us 410 entries - call it a million. That means each index will be found in about 6,000 locations. Kind of a lot, but maybe doable. If we do 20-mers - well, 420 is 1,099,511,627,776. This is more on the lines of what we need in an index - it's well beyond the number of characters in the genome, so each index shouldn't show up in more than one or two locations. There's just one small problem: We now have six billion entries with twenty-character identifiers, and the space our index needs is now up to 120 gigabytes!

Maybe we could tweak and tune and find a sweet spot, but instead we'll try a different approach entirely to indexing. Next time.

Part I: A Million Dollars Up For Grabs
Part II: Analyzing DNA with BWA
Part III: Analyzing DNA Programmatically
Part IV: Indexing the Human Genome